# Applied-Numerical Qual - August 2022

Ryan Budahazy

December 2022

## Numerical Problem 1

#### Part 1

Proof. We have that

$$a_{h}(v_{h}, v_{h}) = \int_{\Omega} \mu |\nabla v_{h}|^{2} + \int_{\Omega} v_{h} \beta \cdot \nabla v_{h} + \alpha h \int_{\Omega} |\nabla v_{h}|^{2}$$

$$= (\mu + \alpha h) ||\nabla v_{h}||_{L^{2}(\Omega)}^{2} + \int_{\Omega} \frac{\beta}{2} \cdot \nabla (v_{h}^{2})$$

$$= (\mu + \alpha h) ||\nabla v_{h}||_{L^{2}(\Omega)}^{2} + \int_{\partial \Omega} v_{h}^{2} \beta \cdot \nu - \int_{\Omega} v_{h}^{2} \operatorname{div}(\beta)$$

$$= (\mu + \alpha h) ||\nabla v_{h}||_{L^{2}(\Omega)}^{2}$$

$$\geq (\mu_{0} + \alpha h) ||\nabla v_{h}||_{L^{2}(\Omega)}^{2}$$

$$= \mu_{h} ||\nabla v_{h}||_{L^{2}(\Omega)}^{2},$$

where we have used multidimensional integration by parts on the third line and the facts that  $v_h \in H_0^1(\Omega)$  and  $\operatorname{div}(\beta) = 0$ .

 $F(\cdot)$  is continuous by the Cauchy-Schwarz inequality, and since  $||\nabla v_h||^2_{L^2(\Omega)}$  is an (equivalent) norm on  $H^1_0(\Omega)$ ,  $a_h(\cdot,\cdot)$  is coercive. Clearly  $a_h(\cdot,\cdot)$  is bilinear, so it remains to show continuity. We have that

$$|a_{h}(v_{h}, w_{h})| \leq (\mu + \alpha h) \int_{\Omega} |\nabla v_{h}| |\nabla w_{h}| + \int_{\Omega} |\beta| |\nabla v_{h}| |w_{h}|$$

$$\leq (\mu + \alpha h) ||\nabla v_{h}||_{L^{2}(\Omega)} ||\nabla w_{h}||_{L^{2}(\Omega)} + \beta_{1} ||\nabla v_{h}||_{L^{2}(\Omega)} ||w_{h}||_{L^{2}(\Omega)}$$

$$\leq ||\nabla v_{h}||_{L^{2}(\Omega)} (\max\{\mu + \alpha h, \beta_{1}\}) ||w_{h}||_{H^{1}(\Omega)}$$

$$\leq (\max\{\mu + \alpha h, \beta_{1}\}) ||v_{h}||_{H^{1}(\Omega)} ||w_{h}||_{H^{1}(\Omega)}.$$

Thus by the Lax-Milgram theorem,  $a_h(u_h, v_h) = F(v_h)$  for all  $v_h \in V_h$  has one and only one solution.

#### Part 2

*Proof.* We have that

$$a_h(v_h, v_h - u_h) - F(v_h - u_h) = a_h(v_h, v_h - u_h) - a_h(u_h, v_h - u_h)$$
$$= a_h(v_h - u_h, v_h - u_h) \ge \mu_h ||\nabla(v_h - u_h)||^2_{L^2(\Omega)}$$

by Part 1.

We have that

$$||\nabla(u-u_h)||_{L^2(\Omega)} \le ||\nabla(v_h-u_h)||_{L^2(\Omega)} + ||\nabla(v_h-u)||_{L^2(\Omega)}.$$

We now focus on the  $||\nabla(v_h - u_h)||_{L^2(\Omega)}$  term. Using what we've just shown, we have that

$$||\nabla(v_h - u_h)||_{L^2(\Omega)} \le \frac{1}{\mu_h} \frac{|a_h(v_h, v_h - u_h) - F(v_h - u_h)|}{||\nabla(v_h - u_h)||_{L^2(\Omega)}} \le \frac{1}{\mu_h} \sup_{w_h \in \mathbb{V}_h} \frac{|a_h(v_h, w_h) - F(w_h)|}{||\nabla w_h||_{L^2(\Omega)}}.$$

Plugging this back in yields

$$\begin{split} ||\nabla(u-u_h)||_{L^2(\Omega)} &\leq \frac{1}{\mu} \sup_{w_h \in \mathbb{V}_h} \frac{|a_h(v_h, w_h) - F(w_h)|}{||\nabla w_h||_{L^2(\Omega)}} + ||\nabla(v_h - u)||_{L^2(\Omega)} \\ &\leq \frac{1}{\mu} \sup_{w_h \in \mathbb{V}_h} \frac{|a_h(v_h, w_h) - F(w_h)|}{||\nabla w_h||_{L^2(\Omega)}} + \left(1 + \frac{M}{\mu_h}\right) ||\nabla(v_h - u)||_{L^2(\Omega)} \,, \end{split}$$

whence taking the infimum over  $v_h \in \mathbb{V}_h$  yields the desired result.

#### Part 3

Proof. Using the Cauchy-Schwarz inequality, we have that

$$\sup_{w_h \in \mathbb{V}_h} \frac{\left| a_h(v_h, w_h) - a(v_h, w_h) \right|}{\left| \left| \nabla w_h \right| \right|_{L^2(\Omega)}} \leq \sup_{w_h \in \mathbb{V}_h} \frac{\alpha h \int_{\Omega} \left| \nabla v_h \right| \left| \nabla w_h \right|}{\left| \left| \nabla w_h \right| \right|_{L^2(\Omega)}}$$
$$\leq \sup_{w_h \in \mathbb{V}_h} \frac{\alpha h \left| \left| \nabla v_h \right| \right|_{L^2(\Omega)} \left| \left| \nabla w_h \right| \right|_{L^2(\Omega)}}{\left| \left| \nabla w_h \right| \right|_{L^2(\Omega)}}$$
$$= \alpha h \left| \left| \nabla v_h \right| \right|_{L^2(\Omega)}.$$

### Part 4

Proof. Putting Parts 2 and 3 together, we have that

$$||\nabla(u - u_h)||_{L^2(\Omega)} \leq \frac{1}{\mu_h} \inf_{v_h \in \mathbb{V}_h} \left( \alpha h ||\nabla v_h||_{L^2(\Omega)} + (\mu_h + M) ||\nabla(v_h - u)||_{L^2(\Omega)} \right)$$

$$\leq \frac{\alpha h}{\mu_h} ||\nabla u||_{L^2(\Omega)} + \frac{\mu_h + M + \alpha h}{\mu_h} \inf_{v_h \in \mathbb{V}_h} ||\nabla(v_h - u)||_{L^2(\Omega)}$$

$$\leq \frac{\alpha h}{\mu_h} ||u||_{H^2(\Omega)} + \frac{\mu_h + M + \alpha h}{\mu_h} \inf_{v_h \in \mathbb{V}_h} ||\nabla(v_h - u)||_{L^2(\Omega)}.$$

We now focus on the  $\inf_{v_h \in \mathbb{V}_h} ||\nabla (v_h - u)||_{L^2(\Omega)}$  term. Let  $I_h u$  be the nodal Lagrange interpolant of u, then we have

$$\inf_{v_h \in \mathbb{V}_h} ||\nabla(v_h - u)||_{L^2(\Omega)} \le ||\nabla(u - I_h u)||_{L^2(\Omega)} = \sum_{T \in \mathcal{T}_h} ||\nabla(u - I_h u)||_{L^2(T)}$$

$$\le \sum_{T \in \mathcal{T}_h} C ||\hat{u} - p||_{H^2(\hat{T})}$$

for any  $p \in \mathbb{P}^1$  (this inequality comes after transferring to the reference triangle, and since  $I_h$  disappears on  $p \in \mathbb{P}^1$ , we can add zero in the norm  $p - I_h p$  and bound by the operator norm of  $I_h$  after collecting similar terms). Taking the infimum over  $p \in \mathbb{P}^1$  and using the Bramble-Hilbert lemma yields

$$\begin{split} \inf_{v \in \mathbb{V}_h} ||\nabla (v_h - u)||_{L^2(\Omega)} &\leq C \sum_{T \in \mathcal{T}_h} |\hat{u}|_{H^2(\hat{T})} \leq C \sum_{T \in \mathcal{T}_h} h_k |u|_{H^2(T)} \\ &\leq C \sum_{T \in \mathcal{T}_h} h|u|_{H^2(T)} = C h|u|_{H^2(\Omega)} \leq C h \, ||u||_{H^2(\Omega)} \, . \end{split}$$

Plugging this back in, we have

$$||\nabla (u - u_h)||_{L^2(\Omega)} \le \frac{\alpha h}{\mu_h} ||u||_{H^2(\Omega)} + C \frac{\mu_h + M + \alpha h}{\mu_h} h ||u||_{H^2(\Omega)}$$

For  $h \leq 1$ , we can bound the right-hand side by

$$\left((C+1)\frac{\alpha h}{\mu_h} + Ch\left(1+\frac{M}{\mu_h}\right)\right)||u||_{H^2(\Omega)} \leq (C+1)\left(1+\frac{M+\alpha}{\mu_h}\right)||u||_{H^2(\Omega)}\,h,$$

which gives us the desired inequality.

## Numerical Problem 2

Proof. We have that

$$||v - \pi_h v||_{L^2(\Omega)} = \sum_{T \in \mathcal{T}_h} ||v - \pi_h v||_{L^2(T)} \le C \sum_{T \in \mathcal{T}_h} \left( h_T ||\hat{v} - \widehat{\pi_h} \hat{v}||_{L^2(\hat{T})} + ||\nabla (\hat{v} - \widehat{\pi_h} \hat{v})||_{L^2(\hat{T})} \right).$$

We remark that  $\widehat{\pi_h} = \pi_h$ , and since  $p - \pi_h p$  disappears on  $p \in \mathbb{P}^0$ , for  $T \in \mathcal{T}_h$  we then have

$$\begin{split} &h_{T} \left| \left| \hat{v} - \widehat{\pi_{h}} \hat{v} \right| \right|_{L^{2}(\hat{T})} + \left| \left| \nabla (\hat{v} - \widehat{\pi_{h}} \hat{v}) \right| \right|_{L^{2}(\hat{T})} \\ &= h_{T} \left| \left| \hat{v} - \pi_{h} \hat{v} - p + \pi_{h} p \right| \right|_{L^{2}(\hat{T})} + \left| \left| \nabla (\hat{v} - \pi_{h} \hat{v} - p + \pi_{h} p) \right| \right|_{L^{2}(\hat{T})} \\ &\leq h_{T} \left| \left| \hat{v} - p \right| \right|_{L^{2}(\hat{T})} + h_{T} \left| \left| \pi_{h} (\hat{v} - p) \right| \right|_{L^{2}(\hat{T})} + \left| \left| \nabla (\hat{v} - p) \right| \right|_{L^{2}(\hat{T})} + \left| \left| \nabla \pi_{h} (\hat{v} - p) \right| \right|_{L^{2}(\hat{T})} \\ &= h_{T} \left| \left| \hat{v} - p \right| \right|_{L^{2}(\hat{T})} + h_{T} \left| \left| \pi_{h} (\hat{v} - p) \right| \right|_{L^{2}(\hat{T})} + \left| \left| \nabla (\hat{v} - p) \right| \right|_{L^{2}(\hat{T})} \\ &\leq (h_{T} + 1) \left| \left| \hat{v} - p \right| \right|_{H^{2}(\hat{T})} + h_{T} \left| \left| \pi_{h} (\hat{v} - p) \right| \right|_{L^{2}(\hat{T})}, \end{split}$$

since  $\nabla \pi_h = 0$ . We have that

$$||\pi_h(\hat{v}-p)||_{L^2(\hat{T})} = \left(\int_{\hat{T}} \left(\frac{1}{|\hat{T}|} \int_{\hat{T}} (\hat{v}-p) \, dx\right)^2 \, dx\right)^{1/2} \le C \, ||\hat{v}-p||_{L^\infty(\hat{T})} \le C \, ||\hat{v}-p||_{H^2(\hat{T})}$$

via a Sobolev embedding (should the inner integral be over T or  $\hat{T}$ ?). Thus,

$$h_{T} || \hat{v} - \widehat{\pi_{h}} \hat{v} ||_{L^{2}(\hat{T})} + || \nabla (\hat{v} - \widehat{\pi_{h}} \hat{v}) ||_{L^{2}(\hat{T})}$$

$$\leq (h_{T} + 1 + C) || \hat{v} - p ||_{H^{2}(\hat{T})}$$

$$\leq C || \hat{v} - p ||_{H^{2}(\hat{T})}$$

for  $h_T$  small (we reuse C as a generic constant). Furthermore,

$$||v - \pi_h v||_{L^2(\Omega)} \le C \sum_{T \in \mathcal{T}_h} ||\hat{v} - p||_{H^2(\hat{T})};$$

after taking the infimum over  $p \in \mathbb{P}^0$  and using the Bramble-Hilbert lemma, we then have

$$||v - \pi_h v||_{L^2(\Omega)} \le C \sum_{T \in \mathcal{T}_h} |\hat{v}|_{H^1(\hat{T})}.$$

Finally, since  $\hat{v} = v(B\hat{x} + b)$ , we have  $\nabla \hat{v} = \nabla v|B| \le h_T \nabla v$ , whence

$$\left|\left|v - \pi_h v\right|\right|_{L^2(\Omega)} \leq C \sum_{T \in \mathcal{T}_h} \left|\hat{v}\right|_{H^1(\hat{T})} \leq C \sum_{T \in \mathcal{T}_h} h_T \left|v\right|_{H^1(T)} \leq C h \sum_{T \in \mathcal{T}_h} \left|v\right|_{H^1(T)} = C h \left|v\right|_{H^1(\Omega)},$$

where C does not depend on h if h is small.

#### Numerical Problem 3

*Proof.* We first test with  $u_h^n$ , yielding

$$\frac{1}{\delta t}(u_h^{n+1} - u_h^n, u_h^n) + ||\nabla u_h^n||_{L^2(\Omega)}^2 = 0,$$

and after using the hint, we have that

$$\frac{1}{2\delta t} \left| \left| u_h^{n+1} \right| \right|_{L^2(\Omega)}^2 - \frac{1}{2\delta t} \left| \left| u_h^n \right| \right|_{L^2(\Omega)}^2 + \left| \left| \nabla u_h^n \right| \right|_{L^2(\Omega)}^2 = \frac{1}{2\delta t} \left| \left| u_h^{n+1} - u_h^n \right| \right|_{L^2(\Omega)}^2. \tag{1}$$

3

We now need to estimate the right-hand side, so we test with  $u_h^{n+1} - u_h^n$ , yielding

$$\frac{1}{\delta t} \left| \left| u_h^{n+1} - u_h^n \right| \right|_{L^2(\Omega)}^2 = -(\nabla u_h^n, \nabla (u_h^{n+1} - u_h^n)),$$

whence

$$\frac{1}{\delta t} \left| \left| u_h^{n+1} - u_h^n \right| \right|_{L^2(\Omega)}^2 \leq \left| \left| \nabla u_h^n \right| \right|_{L^2(\Omega)} \left| \left| \nabla (u_h^{n+1} - u_h^n) \right| \right|_{L^2(\Omega)},$$

after bounding by the absolute value and using Cauchy-Schwarz. Using the hint and continuing on, we have that

$$\frac{1}{\delta t}\left|\left|u_h^{n+1}-u_h^n\right|\right|_{L^2(\Omega)}^2 \leq \frac{C}{h}\left|\left|\nabla u_h^n\right|\right|_{L^2(\Omega)}\left|\left|u_h^{n+1}-u_h^n\right|\right|_{L^2(\Omega)},$$

whence

$$\left|\left|u_h^{n+1}-u_h^n\right|\right|_{L^2(\Omega)} \leq \frac{C\delta t}{h} \left|\left|\nabla u_h^n\right|\right|_{L^2(\Omega)}.$$

Squaring the above inequality, using it in (1), and summing over  $n = 0, \dots, N$  yields the desired result.