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Numerical Problem 1

Part 1
Proof. We have that
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where we have used multidimensional integration by parts on the third line and the facts that v, € H(Q) and
div(8) = 0.

F(-) is continuous by the Cauchy-Schwarz inequality, and since |\Vvh||2LQ(Q) is an (equivalent) norm on H{ (),
ap(+,-) is coercive. Clearly ap(-,-) is bilinear, so it remains to show continuity. We have that
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Thus by the Lax-Milgram theorem, ay (up,vy) = F(vy) for all v, € Vj, has one and only one solution. O

Part 2
Proof. We have that
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by Part 1.
We have that
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We now focus on the [|V(vy, — up)|[ 2o term. Using what we’ve just shown, we have that
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Plugging this back in yields
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whence taking the infimum over v, € V}, yields the desired result. O
Part 3
Proof. Using the Cauchy-Schwarz inequality, we have that
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Part 4
Proof. Putting Parts 2 and 3 together, we have that
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We now focus on the infy, ev, [[V(vn — u)l|12(q) term. Let Iyu be the nodal Lagrange interpolant of u, then we have
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for any p € P! (this inequality comes after transferring to the reference triangle, and since I;, disappears on p € P!,
we can add zero in the norm p — I;,p and bound by the operator norm of I, after collecting similar terms). Taking
the infimum over p € P! and using the Bramble-Hilbert lemma yields
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Plugging this back in, we have
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For h <1, we can bound the right-hand side by
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which gives us the desired inequality. O
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Numerical Problem 2

Proof. We have that
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via a Sobolev embedding (should the inner integral be over T or T?) Thus,
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for hr small (we reuse C' as a generic constant). Furthermore,
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after taking the infimum over p € PY and using the Bramble-Hilbert lemma, we then have
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Finally, since & = v(B% + b), we have Vo = Vv|B| < hy Vv, whence
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where C' does not depend on A if A is small.
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Numerical Problem 3
Proof. We first test with u}, yielding
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We now need to estimate the right-hand side, so we test with uZH — uy, yielding
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after bounding by the absolute value and using Cauchy-Schwarz. Using the hint and continuing on, we have that
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Squaring the above inequality, using it in (1), and summing over n =0, --- , N yields the desired result.



